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Abstract. Polaron properties are studied in bulk wurtzite nitride ternary mixed crystals AxB1−xN
(A, B=Al, Ga, In) with the use of a dielectric continuum Fröhlich-like electron-phonon interaction
Hamiltonian. The polaronic self-trapping energy and effective mass are analytically derived by taking
the mixing properties of the LO and TO polarizations due to the anisotropy effect into account in the
mono-phonon approximation. The numerical computation has been performed for the wurtzite ternary
mixed crystal materials InxGa1−xN, AlxGa1−xN, and AlxIn1−xN as functions of the composition x. The
results show that the polaronic self-trapping energies in the wurtzite structures are bigger than that in
zinc-blende structures for the materials calculated. It is also found that the structure anisotropy increases
the electron-phonon interaction in wurtizte nitride semiconductors. The results indicate that the LO-like
phonon influence on the polaronic self-trapping energy and effective mass is dominant, and the anisotropy
effect is obvious.

PACS. 63.20.Kr Electron-phonon interaction – 71.38.-k Polaron – 78.30.Fs Semiconductor

1 Introduction

Recently, III-nitride (III-N) semiconductors have become
important materials for the fabrication of optoelectronic
devices operating in the green, blue, and ultraviolet spec-
tral region [1–3]. Much attention has been focused on III-N
ternary mixed crystals (TMCs) such as InxGa1−xN,
AlxGa1−xN, and AlxIn1−xN [4–6]. It has been shown that
the III-N TMCs are polar semiconductors with a direct
band gap over the range of 2.0 eV in InN to 6.3 eV in AlN
with an intermediate value 3.5 eV for GaN in a wide range
of the composition [2,5]. The III-N TMCs offer more flex-
ible choices for consecutive layers in heterostructures and
quantum wells with desirable lattice constants and band
offsets, which allows for important potential application
of III-nitrides in light-emitting diodes and laser diodes
with wavelengths from red to deep ultraviolet. Phonon
modes in III-N TMCs AxB1−xN have been investigated
theoretically within the modified random-element isodis-
placement (MREI) model [4,5]. In alloy systems one im-
portant phenomenon is the mode behavior of the long-
wavelength optical phonons. TMCs AxB1−xC with fully
pronounced random alloy character are classified into two
main classes according to the behavior of their zone-center
optical phonons [7,8]. In the one-mode class, the frequen-
cies vary continuously and approximately linearly with the
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molar fraction of the alloy. In the case of the two-mode be-
havior the two sets of optical modes correspond nearly to
that of the two pure crystals AC or BC that compose
the alloy. For the TMCs InxGa1−xN, AlxGa1−xN, and
AlxIn1−xN the one-mode behavior of the optical phonons
has been clearly observed [4–6], in agreement with predic-
tions of model calculations.

The III-N semiconductors have the hexagonal wurtzite
structure as their natural crystalline structure, and ex-
hibit highly unusual properties in III-V compound semi-
conductors. Since wurtzite crystals have a different unit-
cell structure (i.e., four atoms per unit cell) as well as
lower symmetry compared to their cubic zinc-blende coun-
terparts, the phonon dynamics and electron-phonon (e-p)
interaction in this kind of materials may be substantially
different from those in crystals with cubic symmetry. As is
well known, there are many more distinct phonon branches
(nine optical and three acoustic modes), and the phonon
modes are not purely longitudinal or transverse except
for the [0001] direction [9]. However, the current under-
standing of the phonon dynamics and polaronic effects in
wurtzite nitride semiconductors is very primitive, espe-
cially for the III-N TMCs.

Over the past years, there was a wide experimen-
tal and theoretical study of the e-p interaction in zinc-
blende semiconductors [10–14]. The rich knowledge about
their optical phonon modes, e-p interaction, polaronic
states and electronic effective mass has accumulated
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in bulk and heterostructure systems. In semiconductor
heterostructures, the presence of interfaces breaks the
isotropy in one or more spatial directions, leading to the
mixing of the longitudinal and transverse vibration po-
larizations [11,14], and all of them have been included
in the study of e-p interaction since the TO-like modes
can provide a non-negligible contribution to the scatter-
ing rates and polaron properties. In recent years, the
electron-optical phonon mode interaction mechanism in
crystals with wurtzite structure has been considered. A
new Fröhlich e-p interaction Hamiltonian was put for-
ward for the bulk and heterostructures case [15–17], within
the non retarded dielectric continuum model considering
only the three optical-phonon branches (the one ordinary
and two extraordinary optical phonons) which are infrared
active in this crystal structure. Furthermore, the exis-
tence of a spatial direction with low symmetry (z-axis)
also gives rise to phonon dispersion. For wurtzite nitrides
the dependence of the extraordinary optical phonon fre-
quencies upon the phonon wave-vector �q is not a func-
tion of the wave-vector magnitude but of the angle θ be-
tween �q and the c-axis of the structure (referred as the
z direction in the following) [9]. Wurtzite nitrides are po-
lar materials that exhibit stronger polaronic properties in
comparison to the rest of III-V semiconductors, including
a significant anisotropy effect in the polaronic effective
mass [18,19]. Recently, the authors used a variational the-
ory to study the intermediate-coupling polaron in wurtzite
nitride semiconductors [20]. The results show that the
structural anisotropy increases the e-p interaction due to
the low-dimensionality effect. However, only few works,
to our knowledge, have mentioned the e-p interaction in
wurtzite III-N TMCs [19]. Further theoretical and exper-
imental studies on the polaron effects are needed.

In the present paper, we study polaron properties in
wurtzite III-N TMCs by using a variational treatment in
the framework of the dielectric continuum model [20,21],
by considering the anisotropy of the wurtzite structure.
An effective polaron Hamiltonian for wurtzite III-N TMCs
is obtained by using a Lee, Low and Pines (LLP)-like
method [22,23] in Section 2. In Section 3, a variational
calculation for the formulae of polaronic self-trapping en-
ergies, the e-p coupling constants and effective masses in
wurtzite III-N TMCs are derived. Numerical results for
the wurtzite TMC materials InxGa1−xN, AlxGa1−xN, and
AlxIn1−xN are given as functions of the composition x and
discussed in Section 4.

2 Polaron Hamiltonian

Details of the optical phonon modes in the wurtzite III-N
TMC AxB1−xN can be found -in the MREI model [4,5]. It
is found that optical phonons (A1 and E1) in InxGa1−xN,
AlxGa1−xN, and AlxIn1−xN exhibit one-mode behav-
ior [4–6] unlike GaxAl1−xAs and InxGa1−xAs, which ex-
hibit two-mode behavior [7,8]. In the one-mode case,
the effect of the value of the composition x is intro-
duced by assuming a linear dependence on this variable

in the electron effective mass, the optical dielectric con-
stant, and the fundamental phonon frequencies. Static di-
electric constants are then obtained with the use of the
Lyddane-Sachs-Teller relation. The ternary material pa-
rameters can be derived from binary parameters in linear
interpolation by

TAxB1−xN (x) = xTAN + (1 − x)TBN . (1)

We consider a uniaxial nitride semiconductor in which
only one group of the three optical-phonon branches is in-
frared active in the Raman scatting. The wurtzite struc-
ture is a case in point since at the Γ point, only the
A1(Z) and E1(X, Y ) modes are infrared active among
the nine optical phonon modes. We take the c-axis along
the z direction and denote its perpendicular direction
as ⊥. Within the macroscopic dielectric continuum model
and the uniaxial model, the e-p interaction Hamiltonial in
the uniaxial crystals has been derived in recently [9,20].
Here, we only mention that it includes two terms: one cor-
responds to a LO-like e-p interaction, and the second to
a TO-like interaction. The dispersion relations for both
kinds of modes are function of the angle θ between the
phonon wavevector �q and the c-axis of the hexagonal lat-
tice, but not of its magnitude. The Hamiltonian of such
an e-p system can be written as [8,9,15–17,20]

H = He + Hph + He−p

=
p2
⊥

2m⊥
+

p2
z

2mz
+
∑

j�q

�ωja
+
j�q aj�q +

∑

j�q

(
Gj�q ei�q·�raj�q + h.c.

)
,

(2)

where j(=L, T ) is the mode-index of the phonon charac-
teristic frequencies and

Gj�q =
(

e2
�

ε0V

)1/2 1
q

(
∂εj

θ

∂ωj

)−1/2

, (3)

∂εj
θ

∂ωj
=

∂ε⊥(ωj)
∂ωj

sin2 θ +
∂εz(ωj)

∂ωj
cos2 θ. (4)

The dielectric functions of direction-dependent ε⊥(ω)
and εz(ω) are given by

ε⊥(ω) = ε∞⊥
ω2 − ω2

⊥L

ω2 − ω2
⊥T

, (5)

and

εz(ω) = ε∞z
ω2 − ω2

zL

ω2 − ω2
zT

, (6)

ε∞⊥ (ε∞z ) being the high-frequency dielectric constant per-
pendicular to (along) the z axis, and ε0

⊥ = ε∞⊥ ω2
⊥L/ε2

⊥T ;
ε0

z = ε∞z ω2
zL/ε2

zT are the static dielectric constants. ωzL

and ω⊥L are the LO-phonon frequencies along and per-
pendicular to the z axis, respectively, and ωzT and ω⊥T

are the corresponding TO-phonon frequencies.
The phonon mode for extraordinary phonons are ob-

tained from the phonon dispersion relation [9,15]:

εj
θ(ω) = ε⊥(ω) sin2 θ + εz(ω) cos2 θ = 0. (7)
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We assume ε∞z = ε∞⊥ ; this quite a good assumption
since ε∞ is primarily due to electrons. Then,

ω2 − ω2
⊥L

ω2 − ω2
⊥T

sin2 θ +
ω2 − ω2

zL

ω2 − ω2
zT

cos2 θ = 0. (8)

When we have |ω⊥L − ωzL| , |ω⊥T − ωzT | <
|ω⊥L − ω⊥T | , |ωzL − ωzT |, which is the case for the
wurtzite-based III-V nitrides, the solutions are

ω2
L = ω2

zL cos2 θ + ω2
⊥L sin2 θ, (9a)

and
ω2

T = ω2
zT sin2 θ + ω2

⊥T cos2 θ. (9b)

These are the characteristic frequencies of predominantly
LO-like and TO-like modes, respectively.

Now we extend the LLP method [22,23], which has
been successfully used to solve the intermediate-coupling
polaron problem in cubic (isotropic) polar crystals, to the
present situation where the electron couples with both
branches of LO-like and TO-like phonons. Making two
unitary transformations as follows:
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the Hamiltonian can be transformed into the following
form

see equation (12) above,

where higher order terms of a+
j�q , aj�q have been neglected

because they have no contribution to the expectation
value for the zero phonon states. In the second unitary
transformation, the displacement amplitudes fj(�q) and
f∗

j (�q) will be determined by minimizing the expectation
value of the polaron energy as follows.

3 Variational method

As a first approximation, we confine our discussion
on the low-temperature limit, i.e. the zero-phonon
state of polaron. The expectation value of the polaron
Hamiltonian (12) in the zero-phonon state |0〉 (〈0 | 0〉 = 1)
is given by
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We derive
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Let ∑

j�q

��q |fj(�q)|2 = η �P , (16)

where �P = (�P⊥, Pz) is the total momentum and
�q = (�q⊥, qz) is the phonon wave-vector. We have adopted
P⊥ = P sinβ, Pz = P cosβ and q⊥ = q sin θ, qz = q cos θ.
Here β is the angle between the total momentum �P and
the c-axis. Without loosing generality, �q, �P and the c-axis
can be assumed in the same plane. We solve (15) and
obtain

f∗
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Inserting equation (17) in (16), we obtain
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Then inserting equations (17)–(20) into (13), we finally
obtain the energy of the zero-phonon state of the polaron
as follows

E(�P ) =
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2m∗ − Etr
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The last term in equation (21) stands for the higher or-
der terms over fourth power of the total momentum �P ,
which can be neglected for slow-moving polarons. m∗ is
the polaron effective mass and can be given by
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Here EL

tr and ET
tr are, respectively, the contributions of the

LO-like and TO-like phonons to the polaron self-trapping
energy. ∆mL and ∆mT are related respectively to LO-like
and TO-like phonons and defined as follows
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Changing the summation in the above equations into

an integration by using the following relation
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the polaronic self-trapping energy can be rewritten as
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An effective e-p coupling constant α is introduced to de-
scribe the total effect of the e-p interaction on the pola-
ronic self-trapping energy, and it can be written as

α = αL + αT =
∑

j�q
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=
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In a similar way in equation (24), one can obtain the in-
fluence of phonons on the polaronic effective mass ∆mL

and ∆mT . The complexity of equations (24, 25) needs nu-
merical solution.



Z.W. Yan et al.: Polaron properties in ternary group-III nitride mixed crystals 343

Table 1. Parameters used in the calculation. Energy is measured in meV and mass in electron rest mass m0.

A1(TO) A1(LO) E1(TO) E1(LO)

Materials ε0
z ε0

⊥ ε∞z = ε∞⊥ mz m⊥
ωzT ωzL ω⊥T ω⊥L

GaN 66.06 91.10 69.53 91.97 10.18 9.36 5.35 0.20 0.20

AlN 71.10 110.68 83.42 113.54 11.72 8.97 4.84 0.32 0.28

InN 54.91 72.63 57.88 73.75 14.70 13.64 8.4 0.12 0.12

Fig. 1. Polaron self-trapping energies Etr as functions of the composition x for several wurtzite TMCs of III-N compounds:
(a) InxGa1−xN, (b) AlxGa1−xN and (c) AlxIn1−xN.

Fig. 2. Polaron self-trapping energies Etr for wurtzite (solid lines) and zinc-blende (dashed lines) alloys as functions of the
composition x for several TMCs of III-N compounds: (a) InxGa1−xN, (b) AlxGa1−xN and (c) AlxIn1−xN.

4 Numerical results and discussion

We have numerically computed the self-trapping energies,
e-p coupling constants and effective masses of the polarons
in InxGa1−xN, AlxGa1−xN, and AlxIn1−xN. The param-
eters used in the computation are listed in Table 1 [3,24]
for binary wurtzite III-N semiconductor materials, and the
results are illustrated and discussed in Figures 1–4.

Figure 1 shows the polaronic self-trapping ener-
gies as functions of the composition x for InxGa1−xN,
AlxGa1−xN, and AlxIn1−xN materials. It is clearly seen
from Figure 1 that the self-trapping energies as func-
tions of the composition x are monotonous, and are non-
linear for InxGa1−xN and AlxIn1−xN and almost linear
for AlxGa1−xN. The self-trapping energies due to the e-p
interaction are, in fact, rather significant. It follows that
the stronger the e-p coupling or broad forbidden energy

gaps (EFGs) are, the greater are the self-trapping ener-
gies. It is found that the contribution from the TO-like
modes is approximately two orders magnitude smaller
than the LO-like. As expected, the main contribution
comes from the LO-like modes. We can obtain the values
corresponding to the end materials at x = 0 and x = 1:
Etr = EL

tr + ET
tr = 41.39 meV for GaN, =70.32 meV

for AlN, 16.66 meV for InN, respectively, in agreement
with previous calculations [20]. Furthermore, the zinc-
blende phase in III-N TMCs has been found a few years
ago [8,19,23]. For the sake of comparison, we have also
calculated the polaronic self-trapping energies for zinc-
blende structures of the above three materials using a vari-
ational approach [22]. The self-trapping energy of hexago-
nal wurtzite (EH

tr ) and cubic zinc-blende (EC
tr) structures

are plotted as functions of x in direct comparison in Fig-
ure 2. It can easily be seen that the wurtzite structures EH

tr
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Fig. 3. The effective e-p interaction coupling constants α as functions of the composition x for several wurtzite TMCs of III-N
compounds: (a) InxGa1−xN, (b) AlxGa1−xN and (c) AlxIn1−xN.

Fig. 4. Phonon contributions to the polaron effective masses ∆m as functions of the composition x for several wurtzite TMCs
of III-N compounds: (a) InxGa1−xN, (b) AlxGa1−xN and (c) AlxIn1−xN.

are bigger than the zinc-blende materials EC
tr in the en-

tire regions of composition x. These incremental values
∆Etr = EH

tr − EC
tr are also related to the width of the

FEG. It can be seen in Figure 2 that the broader FEG
generally causes the greater ∆Etr for the self-trapping
energies of the above calculated materials. At the end
of x = 0 and x = 1, the TMC reduces to the binary
crystals AN and BN. The net incremental values ∆Etr

are 5.35 meV, 10.56 meV, and 2.18 meV for GaN, AlN
and InN, respectively. The self-trapping energies exhibit
an anisotropy with about 15% (for GaN), 17.6% (for AlN),
and 10.1% (for InN). For the wurtzite III-N TMC materi-
als, the calculational results also show that the structure
anisotropy increases the e-p interaction due to the low-
dimensionality effect. This verifies important conclusion:
the polaronic self-trapping in two dimensions is deeper
than that in three dimensions.

To clearly understand the intensity of the e-p cou-
pling effects in the wurtzite III-N TMCs, the effective
e-p coupling constants α as functions of the composi-
tion x are illustrated in Figure 3. It is seen that there are
monotonous changes (almost linear) with compositions x
for InxGa1−xN, AlxGa1−xN, and AlxIn1−xN materials.
It is found that the magnitude of the electron- LO-like
phonon coupling constants αL is approximately two orders
bigger than the TO-like αT for these materials. It is also

shown that the effective e-p coupling constants α are less
than unity in the entire range of composition x, and are
stronger than those for usual III-V group TMC materials
like GaxAl1−xAs and InxGa1−xAs. We also computed the
binary crystals for wurtzite nitrides GaN, AlN and InN,
and the results are: α = 0.452 for GaN, 0.631 for AlN,
0.224 for InN, respectively. We can conclude that the po-
laron problem for wurzite (hexagonal symmetry) nitride
semiconductors can be dealt with intermediate coupling
approach, which may give more accurate results and work
well in a larger range of the band gap width.

Figure 4 gives the relative shift of the polaronic effec-
tive mass ∆m due to the influence of phonons as functions
of the compositions x for the above three wurtzite nitride
TMC materials. It is clearly seen from Figure 4 that the
characteristics of the curves of β = π/2 and β = 0 are
similar for the materials computed, where β is the angle
between the total momentum �P and the c-axis. The mag-
nitudes of the phonon influence on the effective mass are
always monotonically increasing with the FEG width. It
is found that ∆m for β = π/2 is bigger than for β = 0. It
follows that the contribution variations of phonons to the
relative shift of the polaronic effective mass become bigger
from β = 0 to β = π/2 when the FEG becomes wider, for
example, ∆m∗(π/2) − ∆m∗(0) = 0.051 (for GaN), 0.117
(for AlN), and 0.011 (for InN), respectively. The stronger
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the e-p coupling or broader the FEG, the greater is the
anisotropy influence on the polaronic effective mass for
InxGa1−xN, AlxGa1−xN, and AlxIn1−xN. The anisotropy
in the polaronic effective mass due to the phonon influence
is shown to be significant as well, for the three wurtzite
III-N TMCs materials, and cannot be neglected. It should
be pointed out that the magnitude of the polaronic ef-
fective mass is also related to some other material factors
such as the phonon frequencies and dielectric constants. It
makes the anisotropy effect more complicated. We also cal-
culated the contributions from LO-like phonons and TO-
like on effective mass as functions of the compositions x for
InxGa1−xN, AlxGa1−xN, and AlxIn1−xN. It is indicated
that the LO-like phonons influence on polaronic effective
mass is always larger approximately two orders of mag-
nitude than that from TO-like phonons over the range
of compositions x. This conclusion is in agreement with
our previous work [20]. It shows that the TO-like phonon
influence on the polaron effective mass is unimportant.

In summary, a variational method has been developed
to calculate the self-trapping energies and effective masses
of polarons in wurtzite (hexagonal structure) III-N TMCs.
The anisotropy effect on the polarons in wurtzite III-N
TMCs is obtained and discussed for materials InxGa1−xN,
AlxGa1−xN, and AlxIn1−xN. The numerical results show
that the structure anisotropy increases the e-p interaction
due to the low-dimensionality effect. It indicates that the
anisotropy effect on the polaronic self-trapping energy and
effective mass is obvious. It is also found that the polaronic
self-trapping energy and effective mass increase with the
FEG width. The results show that the LO-like phonon in-
fluence on the polaronic self-trapping energy and effective
mass is dominant.
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18. M.E. Mora-Ramos, F.J. Rodŕıguez, L. Quiroga, Phys. Stat.

Sol. (b) 220, 111 (2000), Solid State Commun. 109, 767
(1999)

19. M.E. Mora-Ramos, Phys. Stat. Sol. (b) 223, 843 (2001)
20. Z.W. Yan, S.L. Ban, X.X. Liang, Phys. Lett. A 236, 157

(2004)
21. M. Born, K. Huang, Dynamical Theory of Crystal Lattices

(Clarendon Press, Oxford, England, 1954)
22. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)
23. X.X. Liang, Y.S. Zhang, Z. Phys. B 91, 455 (1993)
24. I. Vurgaftman, I.R. Ram-Mohan, J. Appl. Phys. 89, 5815

(2001)


